Property Based Testing

Pradeep Gowda
@btbytes

Tests are important
for ...

Stability of the projects

Confidence to make changes

(Refactoring)

Design

(Huh! I thought that was captured in JIRA-124)

Regression Detection

(upstream library devs said there are no breaking
changes)

Testing 1s a great 1dea

... but also hard ...

[mpediments to
testing

Think of what you are testing

(exact set of inputs and outcomes)

Testing => "Indirect" value

IS OUR NEW
PRODUCT

SAFE ENOUGH
TO START
SELLING? 15195

THIS IS RODNEY.
HES IN CHARGE OF
PRODUCT SAFETY
TESTING.

DID THAT
SOUND LIKE
"SHIP” TO

]

Dilbert.com DilbertCartoonist@gmail.com

S21-10 ©2010 Scott Adams, Inc./Dist. by UFS, Inc.

two weeks for "unit testing"

TESTINGTIME="SILACK"

= .
>, { |.
0
(8
.

;
:
‘. [e . .
gy .
: '-—L:—f".
! | ™
i | smanm

A0 ofia.
5] m an
com

imgfiip.

Can we write code to write tests for us ¢

TODAY I LEARNED YOU
CAN END ANY CONVER -
SATION BY CALLING
THE OTHER PERSON A

BIG BABY

GO WRITE SOME
AUTOMATED TEST
SOFTWARE, YOU BIG
BABY. I ALREADY PAY
YOU, S0 IT'S FREE.

YOU ELIMINATED THE
BUDGET FOR AUTOMATED
TEST SOFTWARE. HOW
ARE WE GOING TO

TEST OUR NEW CODE?
WAA-ULJAA!

/

DO YOU WANT
YOUR BOTTLE?

707 ©2007 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®acl.com

T IE

) . 3
'..\‘..' < :

- ‘
X :
LAt e Y
- . »

AN

i . . : ‘ AN \.- _ -,
T IEIFTOLD YOU
S T L 38
. -\s.-." g VN 7o v ‘. ‘ .

»
.
M ’
L »
-

’ o 3
. ’ ,
+ . a . ' 8 r
» 4 : -
- :
&N S T, ' R~ ~ -
- . -) . » Yo —_—
o — e N . > : + -
" l~-- » - ‘.'
ik J . - . .
’ . "
.' ' » - »
. ¥ .\ -
2 ’
- v Ao\ Py ;
. 4
- - L
- L=

= %, A) .
- - i » " N)
_ 4 : il (- v AS N >

- . . ,’ . ‘-‘; -: : . .‘; v > .'-. '.. :. - o -

- - 2 N - ") \-.. » .

" - -’ ;) ~
/ ” Py U "f‘\\‘
. /-‘ \\ . ’

” o - \..

Hpo’rhesis

What is Hypothesis<

Hypothesis is a modern
implementation of
property based testing

http://hypothesis. works

QuickCheck

rom Wikipedia, the free encyclopedia

For the convenience store, see Quick Chek.

JuickCheck is a combinator library, QuickCheck

riginally written in Haskell, designed
0 assist in software testing by
renerating test cases for test suites. It

Developer(s)

. .] Initial release
s compatible with the GHC compiler

ind the Hugs interpreter.

Stable release

n QuickCheck the programmer writes | Operating system

Koen Claessen, John
Hughes

1999

2.6 / 7 March 2013; 5 years
ago

Unix-like, Microsoft

Issertions about logical properties

hat a function should fulfill. Then Available in
JuickCheck attempts to generate a Type

est case that falsifies these License
Issertions. Once such a test case is Website

ound, QuickCheck tries to reduce it
o a minimal failing subset by

Windows
Haskell
Software testing
BSD-style

www.cse.chalmers.se
[~rimh/QuickCheck/ &/

emoving or simplifying input data that are not needed to make the test fail.

‘he project was started in 1999. Besides being used to test regular programs,
JuickCheck is also useful for building up a functional specification, for

locumenting what functions should be doing, and for testing compiler

mplementations.!!]

le-implementations of QuickCheck exist for a number of languages:

http://hypothesis.works

.. runs your tests against a much
wider range of scenarios than a
human tester could...

.. finding edge cases in your code that
you would otherwise have missed.

It then turns them into simple and
easy to understand failures

THE PROJECT STATUS
LS5 “YELLOGW LIGHT. ™

1

5 Adms E-mail: SCOTTADAMS@AOL.COM

IN USER TESTS WE FOUND
THAT THE PRODOCT LOCKS
UP EVERY TWELVE SECONDS.
THE INTERFACE IS INCOM-
PREHENSIBLE AND THE
MANUAL 1S PORE FICTION.

(T THINK | SHIP TT AND

1T CLEAR | HOPE SOMEBODY
WHAT WE | (WRITES A
NEED TO | “DUMMIES”
DO... BOOK ABRQUT
LTS

© 1995 United Feature Syndicate, Inc.(NYC)

o337 4 8

h/?

(so that your users don't have to discover "edge-

cases'")

Hypothesis integrates into your
normal testing workflow

Installing

pip install hypothesis

Writing tests

A test in Hypothesis consists of two parts:

1. A function that looks like a normal test in your test framework
of choice but with some additional arguments

2. and a @given decorator that specifies how to provide those
arguments.

How does a property test look like¢

from hypothesis import given, strategies as st
@given(st.integers(), st.integers())
def test_ints_are_commutative

assert X +y ==y + X

> @given turns test into a property
>> Tuns a number of times

> ... with random input

> ... generated by the strategy

> reports failed examples

... continued ...

@given(x=st.integers(), y=st.integexrs())
def test_ints_cancel(x, y):

assert (x +y) -y ==X

@given(st.lists(st.integers()))
def test_reversing_twice_gives_same_list(xs):
This will generate lists of arbitrary length (usually between 0 and
100 elements) whose elements are integers.
ys = list(xs)
ys.reverse()
ys.reverse()

assert xs == ys

@given(st.tuples(st.booleans(), st.text()))
def test_look_tuples_work_too(t):
A tuple is generated as the one you provided, with the corresponding
types in those positions.
assert len(t) ==
assert isinstance(t[o0], bool)

assert isinstance(t[1], str)

How do property-based tests works

> Properties define the bevaviour
> Focus on high level behaviour
> (Generate Random input

>> Cover the entire input space

> Minimize failure case

Strategies

>> The type of object that is used to explore the examples given
to your test function is called a SearchStrategy.

> These are created using the functions exposed in the
hypothesis.strategies module.

> strategies expose a variety of arguments you can use to
customize generation.

>>> integers(min_value=0, max_value=10).example()

1

Strategies

>>

>>

>>

>>

Based on type of argument
NOT exhaustive —- failure to falsify does not mean true.
Default strategies provided

You can write your own generators

Adapting strategies

@given(st.integexrs().filtex(lambda x: x > 42))
def test_filtering :

self.assertGreater(x, 42)

@given(st.integers().map(lambda x: x * 2))
def test_mapping :
self.assertEqual(x % 2, 0)

Sample of available stratgies

>> one_of

> sampled_from
>> Streams

> regex

> datetimes

> yulds

Shrinking

Shrinking is the process by which Hypothesis tries to produce human
readable examples when it finds a failure - it takes a complex example
and turns it into a simpler one.

Falsified example

from hypothesis import given, strategies as st

@given (st.integers(), st.integers())
def test_multiply_then_divide_is_same :

assert (x * y) / y == x

1if __name__ == ' main__':

test_multiply_then_divide_is_same()

Composing Strategies

>>> from hypothesis.strategies import tuples

>>> tuples(integers(), integexrs()).example()
(-24597, 12566)

Composing and chaining

@given(st.lists(st.integers(), min_size=4, max_size=4).flatmap(
lambda xs: st.tuples(st.just(xs), st.sampled_from(xs))

))

def test_list_and_element_from_it :
(generated_list, element) = pair

self.assertIn(element, generated_list)

import unittest

import unittest

class TestEncoding(unittest.TestCase):
@given(text())
def test_decode_inverts_encode(self, s):
self.assertEqual(decode(encode(s)), s)
if __name__ == '__main__":

unittest.main()

Hypothesis example database

> When Hypothesis finds a bug it stores enough information in
1ts database to reproduce it.

> Default location $PRJ/.hypothesis/examples

Reproducing test
fallures

Provide explicit examples

> Hypothesis will run all examples you’ve asked for first.

> [f any of them fail it will not go on to look for more examples.

@given(text())

@example("Hello world")
@example(x="Some very long string")
def test_some_code :

assexrt True

Reproduce test run with seed

>> You can recreate that failure using the @seed decorator

Health checks

> Strategies with very slow data generation
> Strategies which filter out too much
> Recursive strategies which branch too much

> Tests that are unlikely to complete in a reasonable amount of
time.

Settings

Changing the default behaviour

from hypothesis import given, settings

@settings(max_examples=500)
@given(integexs())
def test_this_thoroughly(x):

pass

Available Settings

> database —— " save examples to and load previous examples"
> perform_health_check

> print_blob

> timeout

> verbosity

Choosing properties for property-based
testing

> Different paths, same destination (eg: x+y == y+x)
> There and back again (eg: decode(encode(s)) == s)

> Transform (eg: set([1,2,3,4]) == set([2,3,41]))

Choosing properties for property-based testing (2)

> Idempotence (eg: uniq([1,2,3,1]) == uniq[(1,2,3)]
Uniq[(1a2)3)])

>> The Test Oracle (Test an alternate/legacy/slow
implementation)

Source —- Choosing properties for property-based testing | F

for fun and profit

https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/

Thank you!

read code -- http://hypothesis.readthedocs.io/en/latest/
usage.html

http://hypothesis.readthedocs.io/en/latest/usage.html
http://hypothesis.readthedocs.io/en/latest/usage.html

