
Property Based Testing
Pradeep Gowda
@btbytes



... ... ...



Tests are important 
for ...



Stability of the projects



Confidence to make changes
(Refactoring)



Design
(Huh! I thought that was captured in JIRA-124)



Regression Detection
(upstream library devs said there are no breaking 

changes)



Testing is a great idea



... but also hard ...



Impediments to 
testing



Think of what you are testing
(exact set of inputs and outcomes)



Testing => "Indirect" value



two weeks for "unit testing"



Can we write code to write tests for us ?











What is Hypothesis?



Hypothesis is a modern 
implementation of 
property based testing

http://hypothesis.works

http://hypothesis.works


... runs your tests against a much 
wider range of scenarios than a 

human tester could...



... finding edge cases in your code that 
you would otherwise have missed.



It then turns them into simple and 
easy to understand failures 



(so that your users don't have to discover "edge-
cases")



Hypothesis integrates into your 
normal testing workflow



Installing

pip install hypothesis



Writing tests

A test in Hypothesis consists of two parts: 

1. A function that looks like a normal test in your test framework 
of choice but with some additional arguments 

2. and a @given decorator that specifies how to provide those 
arguments.



How does a property test look like?

from hypothesis import given, strategies as st
@given(st.integers(), st.integers())
def test_ints_are_commutative(x, y):
    assert x + y == y + x

» @given turns test into a property

» runs a number of times 

» ... with random input

» ... generated by the strategy

» reports failed examples



# ... continued ...

@given(x=st.integers(), y=st.integers())
def test_ints_cancel(x, y):
    assert (x + y) - y == x

@given(st.lists(st.integers()))
def test_reversing_twice_gives_same_list(xs):
    # This will generate lists of arbitrary length (usually between 0 and
    # 100 elements) whose elements are integers.
    ys = list(xs)
    ys.reverse()
    ys.reverse()
    assert xs == ys

@given(st.tuples(st.booleans(), st.text()))
def test_look_tuples_work_too(t):
    # A tuple is generated as the one you provided, with the corresponding
    # types in those positions.
    assert len(t) == 2
    assert isinstance(t[0], bool)
    assert isinstance(t[1], str)



How do property-based tests work?

» Properties define the bevaviour

» Focus on high level behaviour

» Generate Random input

» Cover the entire input space

» Minimize failure case



Strategies

» The type of object that is used to explore the examples given 
to your test function is called a SearchStrategy.

» These are created using the functions exposed in the 
hypothesis.strategies module.

» strategies expose a variety of arguments you can use to 
customize generation.

>>> integers(min_value=0, max_value=10).example()
1



Strategies

» Based on type of argument

» NOT exhaustive -- failure to falsify does not mean true.

» Default strategies provided

» You can write your own generators



Adapting strategies

    # Filtering
    @given(st.integers().filter(lambda x: x > 42))
    def test_filtering(self, x):
        self.assertGreater(x, 42)

    # Mapping
    @given(st.integers().map(lambda x: x * 2))
    def test_mapping(self, x):
        self.assertEqual(x % 2, 0)



Sample of available stratgies

» one_of

» sampled_from

» streams

» regex

» datetimes

» uuids



Shrinking

Shrinking is the process by which Hypothesis tries to produce human 
readable examples when it finds a failure - it takes a complex example 
and turns it into a simpler one.



Falsified example

# two.py
# A sample falsified hypothesis
from hypothesis import given, strategies as st

@given (st.integers(), st.integers())
def test_multiply_then_divide_is_same(x, y):
    assert (x * y) / y == x

# Result:... falsifying_example = ((0, 0), {})

if __name__ == '__main__':
    test_multiply_then_divide_is_same()



Composing Strategies

>>> from hypothesis.strategies import tuples
>>> tuples(integers(), integers()).example()
(-24597, 12566)



Composing and chaining

    # chaining
    @given(st.lists(st.integers(), min_size=4, max_size=4).flatmap(
        lambda xs: st.tuples(st.just(xs), st.sampled_from(xs))
    ))
    def test_list_and_element_from_it(self, pair):
        (generated_list, element) = pair
        self.assertIn(element, generated_list)



import unittest

import unittest

class TestEncoding(unittest.TestCase):
    @given(text())
    def test_decode_inverts_encode(self, s):
        self.assertEqual(decode(encode(s)), s)

if __name__ == '__main__':
    unittest.main()



Hypothesis example database

» When Hypothesis finds a bug it stores enough information in 
its database to reproduce it. 

» Default location $PRJ/.hypothesis/examples



Reproducing test 
failures



Provide explicit examples

» Hypothesis will run all examples you’ve asked for first. 

» If any of them fail it will not go on to look for more examples.

@given(text())
@example("Hello world")
@example(x="Some very long string")
def test_some_code(x):
    assert True



Reproduce test run with seed

» You can recreate that failure using the @seed decorator



Health checks

» Strategies with very slow data generation

» Strategies which filter out too much

» Recursive strategies which branch too much

» Tests that are unlikely to complete in a reasonable amount of 
time.



Settings

Changing the default behaviour

from hypothesis import given, settings

@settings(max_examples=500)
@given(integers())
def test_this_thoroughly(x):
    pass



Available Settings

» database -- " save examples to and load previous examples"

» perform_health_check

» print_blob

» timeout

» verbosity



Choosing properties for property-based 
testing

» Different paths, same destination (eg: x+y == y+x)

» There and back again (eg: decode(encode(s)) == s)

» Transform (eg: set([1,2,3,4]) == set([2,3,41]))



Choosing properties for property-based testing (2)

» Idempotence (eg: uniq([1,2,3,1]) == uniq[(1,2,3)] == 
uniq[(1,2,3)])

» The Test Oracle (Test an alternate/legacy/slow 
implementation)

Source -- Choosing properties for property-based testing | F# 
for fun and profit

https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/


Thank you!

read code -- http://hypothesis.readthedocs.io/en/latest/
usage.html

http://hypothesis.readthedocs.io/en/latest/usage.html
http://hypothesis.readthedocs.io/en/latest/usage.html



